5 research outputs found

    Gaussian distribution of short sums of trace functions over finite fields

    Full text link
    We show that under certain general conditions, short sums of â„“\ell-adic trace functions over finite fields follow a normal distribution asymptotically when the origin varies, generalizing results of Erd\H{o}s-Davenport, Mak-Zaharescu and Lamzouri. In particular, this applies to exponential sums arising from Fourier transforms such as Kloosterman sums or Birch sums, as we can deduce from the works of Katz. By approximating the moments of traces of random matrices in monodromy groups, a quantitative version can be given as in Lamzouri's article, exhibiting a different phenomenon than the averaging from the central limit theorem.Comment: 42 page

    Experimental certification of millions of genuinely entangled atoms in a solid

    Get PDF
    Quantum theory predicts that entanglement can also persist in macroscopic physical systems, albeit difficulties to demonstrate it experimentally remain. Recently, significant progress has been achieved and genuine entanglement between up to 2900 atoms was reported. Here we demonstrate 16 million genuinely entangled atoms in a solid-state quantum memory prepared by the heralded absorption of a single photon. We develop an entanglement witness for quantifying the number of genuinely entangled particles based on the collective effect of directed emission combined with the nonclassical nature of the emitted light. The method is applicable to a wide range of physical systems and is effective even in situations with significant losses. Our results clarify the role of multipartite entanglement in ensemble-based quantum memories as a necessary prerequisite to achieve a high single-photon process fidelity crucial for future quantum networks. On a more fundamental level, our results reveal the robustness of certain classes of multipartite entangled states, contrary to, e.g., Schr\"odinger-cat states, and that the depth of entanglement can be experimentally certified at unprecedented scales.Comment: 11 pages incl. Methods and Suppl. Info., 4 figures, 1 table. v2: close to published version. See also parallel submission by Zarkeshian et al (1703.04709

    Macroscopic quantum entanglement between an optomechanical cavity and a continuous field in presence of non-Markovian noise

    Full text link
    Probing quantum entanglement with macroscopic objects allows to test quantum mechanics in new regimes. One way to realize such behavior is to couple a macroscopic mechanical oscillator to a continuous light field via radiation pressure. In view of this, the system that is discussed comprises an optomechanical cavity driven by a coherent optical field in the unresolved sideband regime where we assume Gaussian states and dynamics. We develop a framework to quantify the amount of entanglement in the system numerically. Different from previous work, we treat non-Markovian noise and take into account both the continuous optical field and the cavity mode. We apply our framework to the case of the Advanced Laser Interferometer Gravitational-Wave Observatory (Advanced LIGO) and discuss the parameter regimes where entanglement exists, even in the presence of quantum and classical noises
    corecore